Унитарный оператор - Definition. Was ist Унитарный оператор
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Унитарный оператор - definition

Унитарное преобразование; Унитарный элемент; Унитарные преобразования

Унитарный оператор         

обобщение понятия вращения евклидова пространства на бесконечномерный случай. Именно, У. о. - оператор вращений гильбертова пространства (См. Гильбертово пространство) вокруг нулевой точки. Оператор U, отображающий гильбертово пространство Н на себя, называется У. о., если (f, g) = (Uf, Ug)(см. Скалярное произведение) для любых двух векторов f и g из Н. У. о. не изменяет длин векторов в Н и углов между ними и является линейным оператором (См. Линейный оператор). Он имеет обратный оператор U1, также являющийся У. о.; при этом U1 = U*, где U* - сопряжённый оператор. Примером У. о. может служить оператор Фурье - Планшереля, ставящий в соответствие каждой функции f (x), - ∞ < х < + ∞, с интегрируемым квадратом модуля функцию

Унитарный оператор         
Унитарный оператор — ограниченный линейный оператор U : H → H на гильбертовом пространстве H, который удовлетворяет соотношению
Унитарное преобразование         

x'i = ui1x1 + ui2x2 +... + uinxn (i = 1, 2,..., n)

с комплексными коэффициентами, сохраняющее неизменной сумму квадратов модулей преобразуемых величин

У. п. представляет собой аналог (точнее, обобщение) поворота в евклидовой плоскости или вращения в трёхмерном евклидовом пространстве на случай n-мерного комплексного векторного пространства (См. Векторное пространство), т.к. оно сохраняет для преобразуемого вектора х с компонентами x1, x2,..., xn его длину, равную

.

Коэффициенты У. п. образуют унитарную матрицу (См. Унитарная матрица). Совокупность У. п. n-мерного комплексного векторного пространства является группой (См. Группа) относительно умножения преобразований. В случае, когда коэффициенты uij и преобразуемые величины xi действительны, У. п. является ортогональным преобразованием (См. Ортогональное преобразование) n-мерного действительного векторного пространства.

Wikipedia

Унитарный оператор

Унитарный оператор — ограниченный линейный оператор U {\displaystyle U}  :  H {\displaystyle H}  →  H {\displaystyle H} на гильбертовом пространстве H {\displaystyle H} , который удовлетворяет соотношению

U U = U U = I {\displaystyle U^{*}U=UU^{*}=I}

где U {\displaystyle U^{*}}  — эрмитово сопряжённый к U {\displaystyle U} оператор, и I {\displaystyle I}  :  H {\displaystyle H}  →  H {\displaystyle H} единичный оператор. Это свойство эквивалентно следующим:

  1. U {\displaystyle U} сохраняет скалярное произведение 〈  ,  〉 гильбертового пространства, то есть для всех векторов x {\displaystyle x} и y {\displaystyle y} в гильбертовом пространстве U x , U y = x , y . {\displaystyle \langle Ux,Uy\rangle =\langle x,y\rangle .}
  2. U {\displaystyle U} — сюръективный оператор.

Это также эквивалентно, казалось бы более слабому условию:

  1. U {\displaystyle U} сохраняет скалярное произведение, и
  2. образ U {\displaystyle U}  — плотное множество.

Чтобы увидеть это, заметим, что U {\displaystyle U} изометричен (а поэтому является ограниченным линейным оператором). Это следует из того, что U {\displaystyle U} сохраняет скалярное произведение. Образ U {\displaystyle U}  — плотное множество. Очевидно, что U 1 {\displaystyle U^{-1}} = U {\displaystyle U^{*}} .

Унитарный элемент это обобщение понятия унитарного оператора. В унитарной *-алгебре элемент U алгебры называется унитарным элементом, если

U U = U U = I {\displaystyle U^{*}U=UU^{*}=I}

где I единичный элемент.

Свойства унитарных преобразований:

  • оператор унитарного преобразования всегда обратим
  • если оператор H ^ {\displaystyle {\hat {H}}} эрмитов, то оператор U ^ = exp ( i H ^ ) {\displaystyle {\hat {U}}=\exp(i{\hat {H}})} унитарен.